



## THE ECONOMIC IMPORTANCE IN LOCAL PRODUCTION OF CIPROFLOXACIN DERIVATIVES

Jinan D. Ayash<sup>1</sup> \*, sameaa J. khammas<sup>2</sup>

<sup>1</sup> Chemistry assistant, department Laboratory, Ministry of Health, Baghdad, Iraq. [J04455439@GMAIL.COM](mailto:J04455439@GMAIL.COM)

<sup>2</sup>Assistant Professor PhD. Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad, Iraq. [sjk\\_1975@yahoo.com](mailto:sjk_1975@yahoo.com)

Received 12/ 11/ 2023, Accepted 7/ 5/ 2024, Published 31/ 12/ 2025



This work is licensed under a CC BY 4.0 <https://creativecommons.org/licenses/by/4.0>

### ABSTRACT

Marketing are not just for business specialists alone, but rather it touches the life of every human being, as each of us is a member of the marketing movement. Most importantly, marketing medicines due to their importance in the health aspect. Our research aims to manufacture pharmaceuticals derived from ciprofloxacin locally and also improvement from antibiotic on the market, rather than relying on imports from outside Iraq. Undoubtedly, this initiative has the potential to benefit individuals and the community both economically and qualitatively. Among the key advantages of these derivatives is their effectiveness in treating urinary tract infections and certain fungal infections. The primary goal is to support individuals and the community, enabling them to compete with pharmaceutical companies outside Iraq. Ciprofloxacin derivatives have been successfully synthesized through series reactions of Ciprofloxacin compound derivatives were produced (A-B8).

The research is aimed at the development and evaluation of a formulation for ciprofloxacin. This endeavor to treat various bacterial infections and fungi, while also focusing on the creation of new heterocyclic derivatives.

our research has demonstrated promising antibacterial and antifungal properties, successfully eradicating Gram-positive bacteria (*Staphylococcus*), Gram-negative bacteria (*Pseudomonas aeruginosa*), and fungi (*Candida albicans*).

**Keywords:** biological activity, Ciprofloxacin, 2-aminobenzothiazole derivatives, Diazonium salt, Synthesis.

### الأهمية الاقتصادية في الانتاج المحلي لمشتقات دواء السيبروفلوكساسين

جانب ظاهر عياش<sup>1</sup>, سمية جمعة خماس<sup>2</sup>

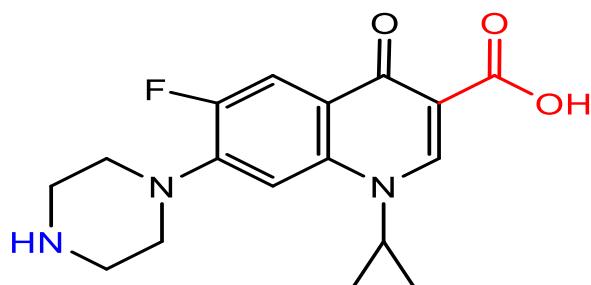
<sup>1</sup> م. كيميائي، قسم المختبرات، وزارة الصحة، بغداد، العراق، [J04455439@GMAIL.COM](mailto:J04455439@GMAIL.COM)

الاستاذ المساعد الدكتور، قسم الكيمياء، كلية العلوم للبنات، جامعة بغداد، بغداد، العراق، [sjk\\_1975@yahoo.com](mailto:sjk_1975@yahoo.com)

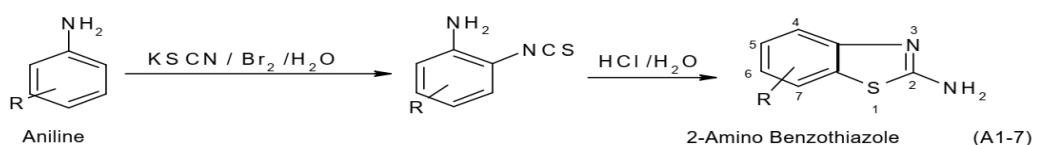
### الخلاصة

التسويق لا يقتصر على متخصصي الأعمال فقط، بل إنه يمس حياة كل إنسان، وكل منا عضو في الحركة التسويقية. والأهم من ذلك تسويق الأدوية لأهميتها في الجانب الصحي. يهدف بحثنا إلى تصنيع الأدوية المشتقة من السيبروفلوكساسين محلياً وكذلك تحسين المضادات الحيوية في الأسواق بدلاً من الاعتماد على الاستيراد من خارج العراق. ومما لا شك فيه أن هذه المبادرة لديها القدرة على إفادة الأفراد والمجتمع اقتصادياً ونورياً. ومن المزايا الرئيسية لهذه المشتقات فعاليتها في علاج التهابات المussels البولية وبعض الالتهابات الفطرية. الهدف الأساسي هو دعم الأفراد والمجتمع وتمكينهم من المنافسة مع شركات الأدوية خارج العراق. تم تصنيع مشتقات السيبروفلوكساسين بنجاح من خلال التفاعلات المتسلسلة لمشتقات مركب السيبروفلوكساسين (A-B8).

ويهدف البحث إلى تطوير وتقديم تركيبة لسيبروفلوكساسين. يهدف هذا المسعى إلى علاج العديد من الالتهابات البكتيرية والفطرية، مع التركيز أيضاً على إنشاء مشتقات حلقية غير متجانسة جديدة. لقد أظهر بحثنا خصائص واعدة


\* The article is taken from the master's thesis of the first researcher.

مضادة للبكتيريا والفطريات، ونجح في القضاء على البكتيريا إيجابية الجرام (*Staphylococcus*), والبكتيريا سالبة الجرام (*Pseudomonas aeruginosa*), ولفطريات (*Candida albicans*).


**الكلمات المفتاحية:** الفعالية البالغة جية، السير ولو كاساسين، مشتقات 2- امينو بنز وثائزول، املاح الدايزونيوم، التصنيع.

## INTRODUCTION

The history of heterocyclic chemistry began in 1800, connecting to the development of organic chemistry. Heterocyclic chemistry is an essential branch of organic chemistry that accounts for nearly one-third of recent publications (**Hosseinzadeh et al., 2018**). In our everyday lives, heterocyclic compounds containing one or more heteroatoms are used in veterinary, agrochemicals, and medicinal products (**Ahmed et al., 2019; Khurshed et al., 2022**). Ciprofloxacin is a broad-spectrum fluoroquinolone (FQ) that is a member of the bicyclic heterocyclic compound (CP, Fig. 1) family. (**Rabbani & Islam, 2020**). It is a commonly used antibiotic with little side effects that has been shown to stop the growth of cancer cells and cause apoptosis in a range of cancer cell lines. (**Kassab & Gedawy, 2018**). Additionally, benzothiazole is a member of the family of bicyclic heterocyclic compounds, which are composed of nitrogen and sulfur atoms fused together with a benzene nucleus (**Al-Mokaram et al., 2022**). Benzothiazole, substitute a heterocyclic molecule, is used in research as a building block to synthesize larger typically bioactive compounds. Despite having reactive sites that enable functionalization as a heterocycle, its aromaticity makes it reasonably stable (**Patrick 2003**). Benzothiazoles are also used to treat antimicrobial (**Mahmood et al., 2022; Khammas & Hamood 2019**), antifungal (**Jamel et al., 2019; Nebras et al., 2019**), anticancer (**Patil & Rajput 2014; Razzaq et al., 2022**) and anti-inflammatory (**Mohan & Naser, 2023; Awad et al., 2019**) activity. These biological data prompted us to synthesize some new benzothiazole derivatives as showing in equation (1). (**Patrick 2003; Hamdia & Sundus, 2023**). In general, acetylenic compounds were discovered to be highly relevant in the field of medicine because triple-bond medicinal compounds have better activity and lower toxicity (**Canseco, et al., 2023**). Also more easily absorbed by living organisms than alkenes (**Mousa et al., 2022**). Some acetylenic compounds were employed as antispasmodics (**Saran et al., 2022**), hypertensive (**Raghad, 2023**). Anticholinergic, anticancer (**Akhtar et al., 2016**), and antibacterial agents.



**Figure (1):** Ciprofloxacin structure with marked fragments that were modified.



### Equation (1)



## MATERIALS AND METHODS

Fluka and Sigma-Aldrich were the sources for all components and solvents. Melting points were measured using the Gallen Kamp capillary melting point device. Additionally, FT-IR measurements were taken using a Shimadzu model FT-IR-8400S camera.  $^1\text{H-NMR}$  spectra were acquired in DMSO-d6 solvent by employing TMS as an internal standard and a Bruker spectrophotometer ultra-shield at 300 MHz.

### **Synthesis of (thiadiazol Ciprofloxacin) (A) (Tomma, 2011; Yaseen *et al.*, 2021).**

Ciprofloxacin (0,01 mole), thiosemecarbazine(0,02 mole), and phosphorus oxychloride (15 ml) were mixed and refluxed for three h . After was complete the reaction (by TLC confirmed the eleuant was EtOAc and Hexane 1/2), added dropwise (10 ml) ice water to the mixture was cooled and refluxed once more for one h. The mixture was cooled and neutralized with sodium hydroxide to obtain a deep yellow precipitate which was filtered and dried before recrystallization. The melting point was (250-252) °C, with a yield of 80% for compound (A). Table (1) contains a list of structure and physical properties of preperd compounds.

### **Synthesis of Diazonium salt (A9) (Narren *et al.*, 2022).**

Compound (A) (0.02) was dissolved in (2.5 mL concentrated HCl in 3 mL water) and cooled in an ice bath. The temperature was kept between 0 and 5°C, and a second aqueous solution made from (0.018 mole) NaNO<sub>2</sub> in (3 mL) H<sub>2</sub>O was then gradually added while stirring the mixture in the ice bath until precipitate appeared. The precipitate was filtered, dried, and recrystallized using DMF.

### **Synthesis of compounds 3-((5-(1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinolin-3-yl)-1,3,4-thiadiazol-2-yl)diazenyl) pentane-2,4-dione (A10) (Narren *et al.*, 2022).**

In order to make compound (A10), in a round bottom flask, add (0.02 moles) of A9 acetyl acetone which was dissolved in (20 mL) of absolute ethanol. Then add the mixture to the flask along with 0.01 mole of sodium carbonate while stirring for around 10 minutes. The mixture was refluxed for seven hours. The precipitate was filtering, drying, and purified with pure ethanol. to obtend compound (A10).

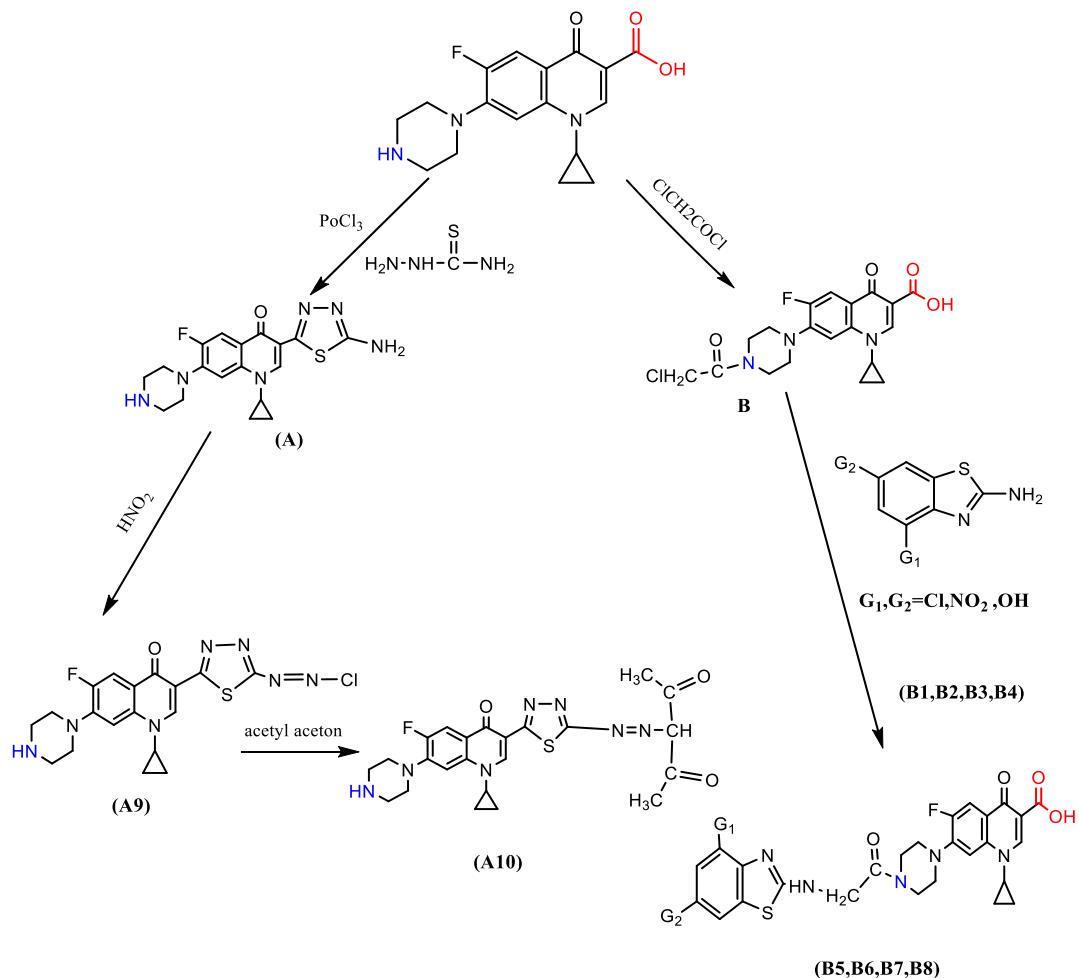
### **Synthesis of (4-(2-chloroacetyl) Ciprofloxacin (B) (Al-zubiady *et al.*, 2016).**

In a round-bottom flask, combine (0.002 moles) of ciprofloxacin, (10 ml) of DMF, and (0.025 moles) of trimethylamine. the mixture was stirred for 8 h., leave this reaction mixture at room temperature stirrer for 1 day, then pour it over crushed ice. The detached substance was dried and recrystallized using absolute ethanol and water in a 1:1 ratio.

### **Synthesis of Substituted-2-aminobenzothiazole (B1-B4) (Zhilitskaya *et al.*, 2021).**

Dissolved in a round bottom flask with a dropping funnel, (0.03 moles) of substituted aromatic primary amine and (0.01 moles) of ammonium thiocyanate were added dropwise while stirring and chilling to a solution of (1.2 ml) of bromine in (10 ml) of glacial acetic acid. There was more stirring for two hours. Then, after vigorous stirring, the produced solution was added to iced water. It was filtered, rinsed, dehydrated, and recrystallized from (1:1) absolute ethanol and water. The final product is a solid.

### **Synthesis of N-(2-aminoacetyl substituted benzothiazole) (B5-B8) (Sulthana & Pandian, 2019).**


A solution of substituted-2-amino benzothiazole (1-5) (0.001 moles) in (10 ml) of absolute ethanol was added drop by drop to the reaction mixture, which was then refluxed for ten hours. The reaction mixture also contained (0.005 moles) of anhydrous potassium



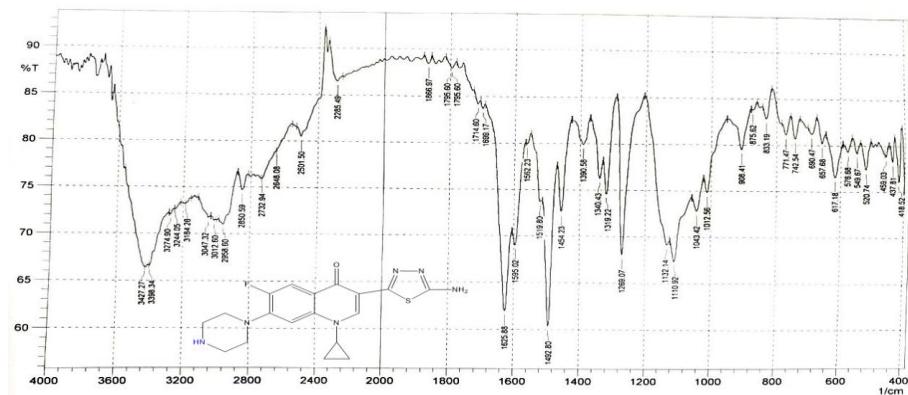
carbonate. After cooling, ethanol was used as a solvent, and the precipitate was then separated, filtered, and recrystallized.

## RESULTS AND DISCUSSIONS

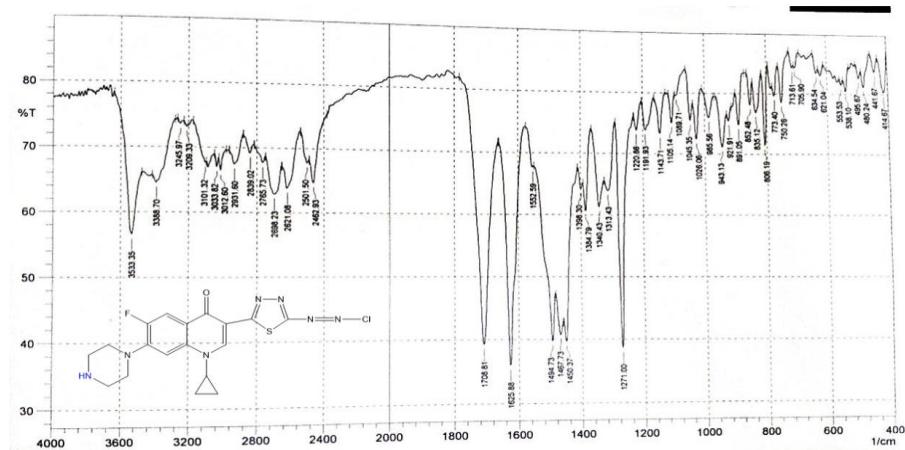
The reactions in (Scheme 1) were used 1 moles of Ciprofloxacin compound with 2 moles of ethyl acetoacetate, which was refluxed for 10 hours to prepare yellow precipitates of compound (A). Additionally, compound (A10) was synthesized by reacting thiadiazol (A) with nitrous acid to prepare diazonium salt (A9) and then reacting it with acetylacetone to produce compound (A10). The physical properties of all compounds are shown in Table 1. The compounds will also be characterized by FTIR spectrum, and the results show the FT-IR spectra of compound (A10), where stretching vibrations bands to the C=O group were seen at  $1720\text{ cm}^{-1}$ , and absorption bands to the C-H group were seen at  $2946\text{ cm}^{-1}$ . The preparation of compound (A10), thiadiazol compound data is as follows: 2.70 ppm (q, 2H,  $\text{CH}_2\text{N}$ ), 7.57 ppm (d, 2H, CH aromatic), 9.1 ppm (s, 1H, NH), 3.2 ppm (s, 1H, CH), 2.2 ppm (s; 3H,  $\text{CH}_3\text{C=O}$ ). Compound B was prepared by a nucleophilic substitution reaction of Ciprofloxacin with chloroacetyl chloride and trimethylamine as a catalyst at a temperature of (5-10°C). The compound B was characterized by FTIR ( $3500-2500\text{ cm}^{-1}$ ) (O-H stretch, of -COOH) and ( $1720, 1710\text{ cm}^{-1}$ ) (C=O stretch, -COOH). Compound B's  $^1\text{H}$ NMR spectra also revealed distinctive chemical alterations (DMSO-d<sub>6</sub>, ppm) listed below: Double peak (3.56, 3.29), Singlet signal of  $\text{CH}_2\text{Cl}$  protons (4.24). The spectrum is shown in the (Fig 4). The compounds (B5, B6, B7, and B8) were prepared by the reaction of compound B with substituted 2-aminobenzothiazole derivatives. Compound (B-B8) was prepared as shown in scheme (1). The FTIR spectrum shown in (Fig 6) has ( $2500-3500\text{ cm}^{-1}$ ) (O-H stretch, -COOH),  $1720\text{ cm}^{-1}$  (C=O stretch, -COOH), and  $1643\text{ cm}^{-1}$  (-CON- Amide, C=O stretching). The biological activity of compounds (A, A10, B8) will be better than all the prepared compounds as shown in table 2. The prepared compounds are depicted in the Schemes shown in table (2).



Scheme 1


Table (1): Physical Properties and Structures of the Compounds (A-B8).

| Compo.<br>und<br>no | Structures                                                                                                                               | Yiel<br>d % | Color     | M.P<br>°C |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|-----------|
| A                   | <p>3-(5-amino-1,3,4-thiadiazol-2-yl)-1-cyclopropyl-6-fluoro-7-(piperazin-1-yl)quinolin-4(1H)-one</p>                                     | 42          | Yellow    | 180-182   |
| A9                  | <p>3-(5-(chlorodiazenyl)-1,3,4-thiadiazol-2-yl)-1-cyclopropyl-6-fluoro-7-(piperazin-1-yl)quinolin-4(1H)-one</p>                          | 75          | Brown     | 178-181   |
| A10                 | <p>3-((5-(1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinolin-3-yl)-1,3,4-thiadiazol-2-yl)diazenyl)pentane-2,4-dione</p> | 85          | Black     | 200-202   |
| B                   | <p>7-(4-(2-chloroacetyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid</p>                          | 92          | white     | 230-232   |
| B1                  | <p>4,6-dichlorobenzo[d]thiazol-2-amine</p>                                                                                               | 98          | Beige     | 58-60     |
| B2                  | <p>6-nitrobenzo[d]thiazol-2-amine</p>                                                                                                    | 90          | Yellow    | 190-192   |
| B3                  | <p>6-chloro-4-nitrobenzo[d]thiazol-2-amine</p>                                                                                           | 66          | orange    | 120-122   |
| B4                  | <p>benzo[d]thiazol-2-amine</p>                                                                                                           | 85          | Off white | 186-188   |


|    |                                                                                                                                            |    |              |         |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|----|--------------|---------|
| B5 | <p>4-cyclopropyl-6-(4-((4,6-dichlorobenzothiazol-2-yl)glycyl)piperazin-1-yl)-7-fluoro-1-oxo-1,4-dihydronaphthalene-2-carboxylic acid</p>   | 70 | Beige        | 174-176 |
| B6 | <p>1-cyclopropyl-6-fluoro-7-(4-((5-nitrobenzothiazol-2-yl)glycyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid</p>          | 60 | Light Yellow | 208-210 |
| B7 | <p>7-(4-((6-chloro-4-nitrobenzothiazol-2-yl)glycyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid</p> | 98 | orange       | 260-262 |
| B8 | <p>7-(4-(benzothiazol-2-ylglycyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid</p>                   | 80 | white        | 262-264 |

**Table (2):** FT-IR Spectral data of synthesized compounds (A-B8) in  $\text{cm}^{-1}$

| Comp. No.  | νN-H | νC-H Aromatic | νC-H Aliphatic. | νC=N | of νC=O ketone | νC=C aromatic | Others                                      |
|------------|------|---------------|-----------------|------|----------------|---------------|---------------------------------------------|
| <b>A</b>   | 3298 | 3047          | 2958,2850       | 1699 | 1625           | 1595          | 1269 ν (C-O) in COOH                        |
| <b>A9</b>  | 3233 | 3033          | 2931,2839       | 1700 | 1625           | 1552,1494     | 1271 ν(C-N)                                 |
| <b>A10</b> | 3292 | 3061          | 2978,2921       | 1675 | 1620           | 1566,1483     | 1153 ν (C-O)                                |
| <b>B</b>   | 3246 | 3095          | 2925,2860       | 1656 | 1627           | 1504,1458     | 1186 ν (C-O)                                |
| <b>B5</b>  | 3225 | 3201          | 2997,2951       | 1678 | 1612           | 1585,1427     | 1138 ν (C-O)                                |
| <b>B6</b>  | 3271 | 3082          | 2924,2854       | 1797 | 1739           | 1500,1476     | 1504,1388 ν(NO <sub>2</sub> ), 1159 ν (C-O) |
| <b>B7</b>  | 3275 | 3056          | 2966,2873       | 1664 | 1624           | 1562,1504     | 3382 ν(O-H), 1130 ν (C-O)                   |
| <b>B8</b>  | 3259 | 3068          | 2970,2871       | 1643 | 1627           | 1554          | 1100ν (C-O)                                 |



**Figure (2):** Compound FT-IR spectrum (A).



**Figure (3):** Compound FT-IR spectrum (A9).

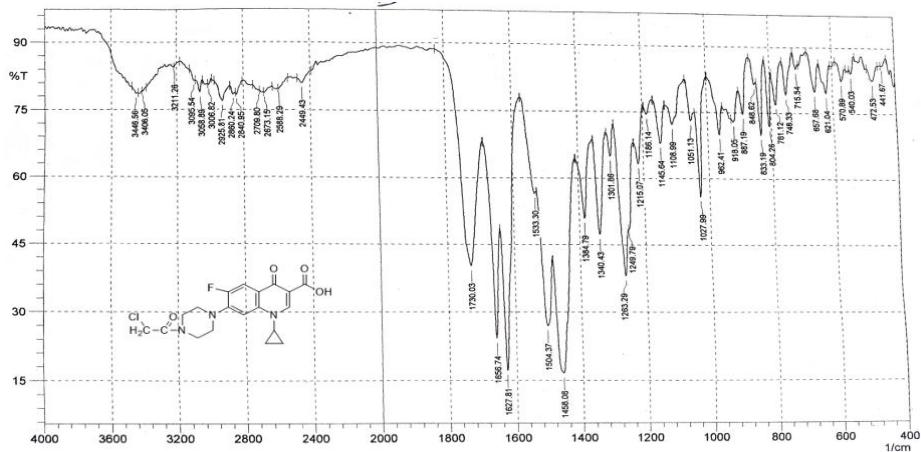



Figure (4): Compound FT-IR spectrum (B).

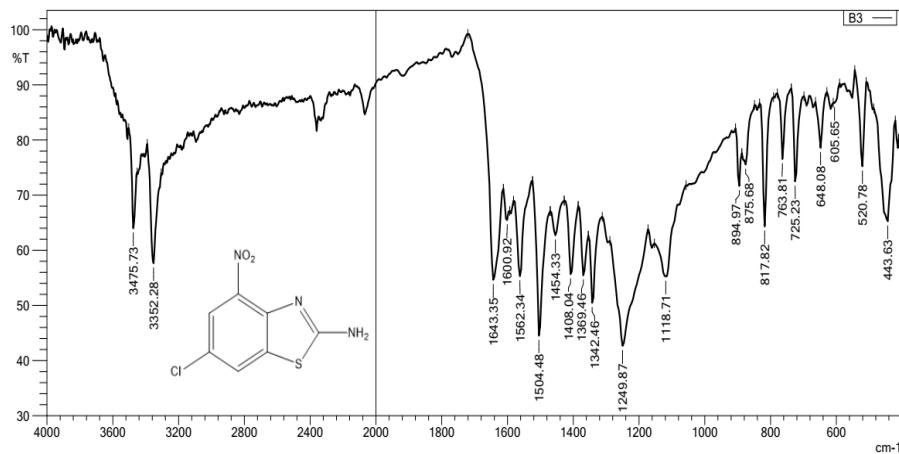
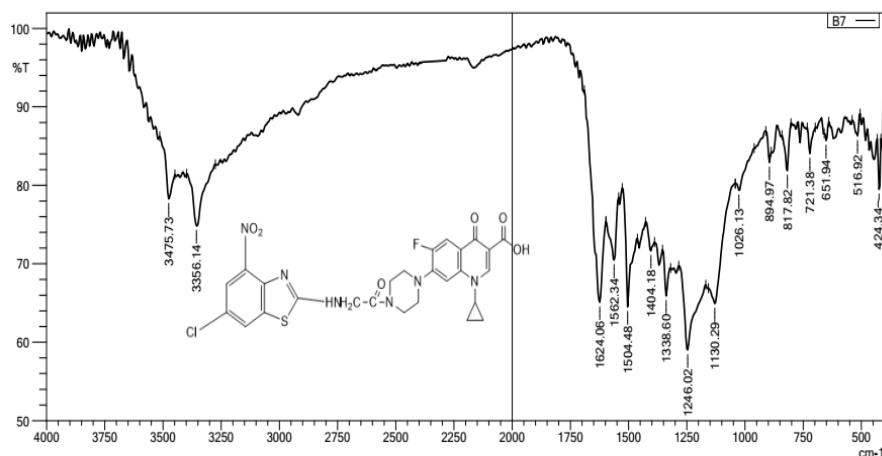
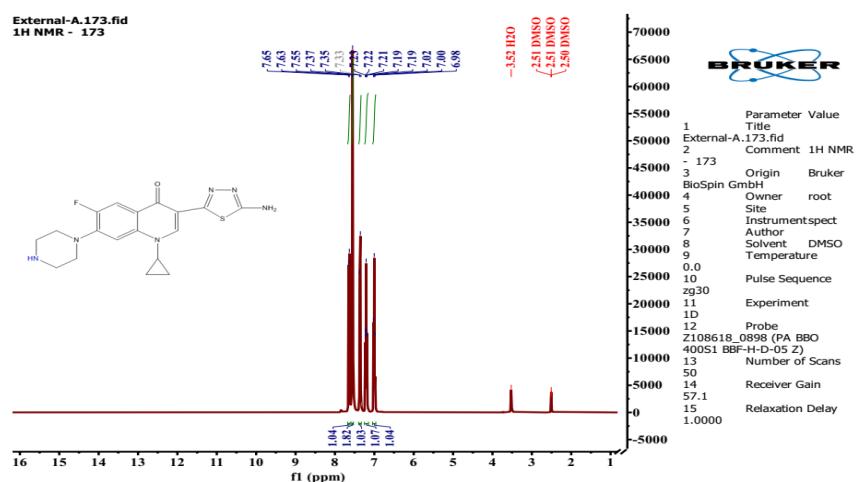
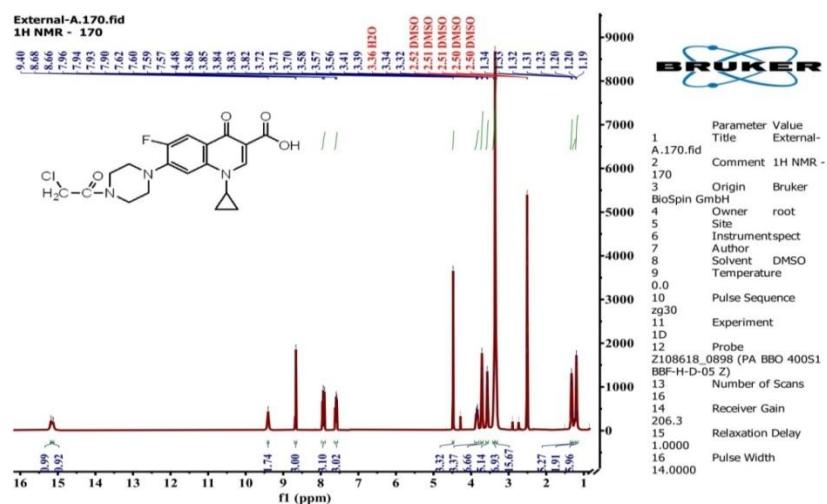
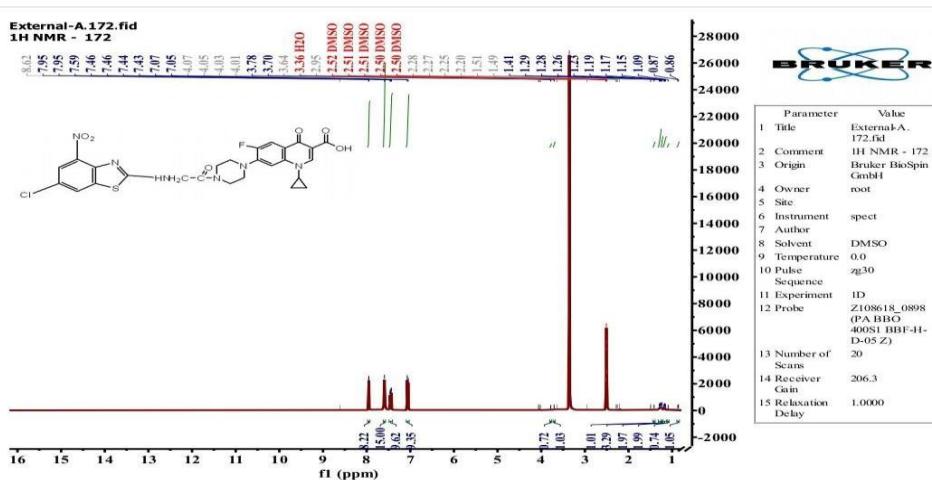
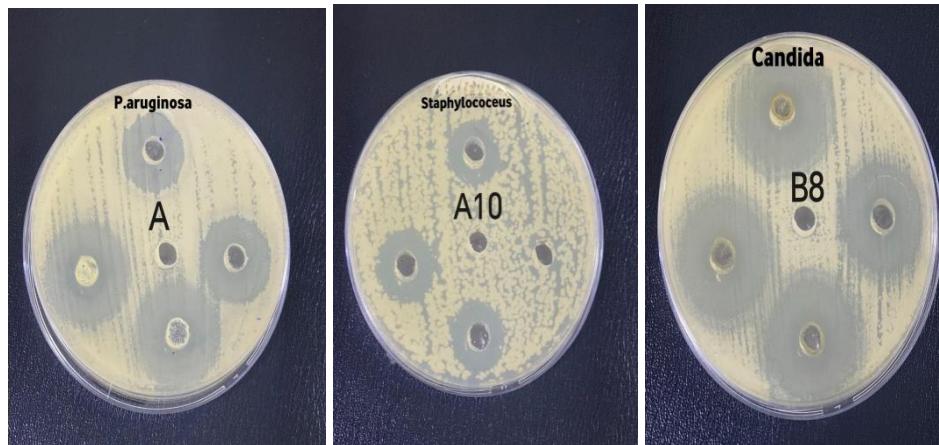



Figure (5): Compound FT-IR spectrum (B3).



Figure (6): Compound FT-IR spectrum (B7).




**Figure (7):**  $^1\text{H}$ -NMR compound spectral A.



**Figure (8):**  $^1\text{H}$ -NMR compound spectral B.



**Figure (9):**  $^1\text{H}$ -NMR compound spectral B7.



**Figure (10):** The effectiveness of compounds( A,A10and B8) for inhibit bacteria p.aeruginosa (*Staphylococcus aureus*), and fungi (*Candida albicans*)

### Biological activates

Studies on the In Vitro Antibacterial Activity The antibacterial potency of the obtained compounds was investigated. First, their minimal inhibitory concentrations were determined for each of them (0.02, 0.01, 0.005, 0.002) mg/ml. The biological activity of some generated compounds (A, A10, and B8) against various bacterial strains was tested. *Candida albicans*, *Staphylococcus aureus*, and *Pseudomonas aeruginosa* were isolated using the agar well diffusion method (Mahdi *et al.*, 2017). The antibacterial activity of (A-A10-B8) against harmful bacteria and fungus was identified using the agar well diffusion method. Table 3 lists the antibacterial outcomes.

### As a fungicide drugs

Examples of fungicides in the benzimidazole class are benomyl, carbendazim, and chlorphenazole. Benzothiazoles are a systemic fungicide that can be used both to prevent and treat fungal infections. The plant takes it up via its roots and its green tissues. It stops the production of beta-tubulin, stops the creation of germ tubes, and stops mycelial growth. It is suitable for use alongside the majority of pesticides. This substance is applied topically to prevent diseases such as blasts, sheath blight, brown spots, powdery mildew, scab, anthracnose, and leaf spot from spreading in various crops (Saini *et al.*, 2023).

### As antimicrobial drugs

**Ciprofloxacin:** Ciprofloxacin is an antibiotic that belongs to the class of medicines known as quinolone. It is applied to infections brought on by specific microorganisms. Most often, it is utilized. Treat infections of the skin, sinuses, bones, and lungs. bladder, kidney, prostate, stomach, and ears. (Walia *et al.*, 2011; Alzhrani *et al.*, 2022).

**Antibacterial Activity.** Together with the patented medicine, Table 3 highlights the in vitro bactericidal activity of 3-substituted carboxylic acids against drug-sensitive Gram-positive (*Staphylococcus aureus*) and Gram-negative (*Pseudomonas aeruginosa*) bacteria. Our goal was to create analogs that exhibited similar efficacy against all tested strains of ciprofloxacin. The results suggest that compound A exhibited strong activity against *Staphylococcus aureus* and *Pseudomonas aeruginosa*, whereas compound B8's phenyl ring containing an electron-donating group also demonstrated action against the same bacteria. Thiadiazol A10 was introduced and demonstrated reasonable efficacy against *Pseudomonas*



*aeruginosa*. In terms of the structure-activity relationship, the results indicate that the antibacterial activity profile against all types of bacteria was changed by the addition of the amino group in the ciprofloxacin molecule. However, changing the substitution in the amino ring also produced notable differences in activity. The expansion of activity appears to be due to better interaction of the molecule with target enzymes or to penetration by these bacteria.

**Table (3):** Biological activity for some synthesized compounds.

| Isol. No.                    | Compound No. | 0.02mg/ml | 0.01mg/ml | 0.005mg/ml | 0.002mg/ml |
|------------------------------|--------------|-----------|-----------|------------|------------|
| <i>P.aeruginosa</i>          | A            | 24        | 20        | 15         | 10         |
| <i>Candida Albicans</i>      | A            | 33        | 30        | 23         | 21         |
| <i>Staphylococcus aureus</i> | A            | 11        | 0         | 0          | 0          |
| <i>P.aeruginosa</i>          | A10          | 32        | 27        | 20         | 18         |
| <i>Candida Albicans</i>      | A10          | 33        | 28        | 24         | 20         |
| <i>Staphylococcus aureus</i> | A10          | 20        | 15        | 0          | 0          |
| <i>P.aeruginosa</i>          | B8           | 25        | 20        | 15         | 0          |
| <i>Candida Albicans</i>      | B8           | 25        | 24        | 21         | 20         |
| <i>Staphylococcus aureus</i> | B8           | 18        | 16        | 15         | 0          |

## CONCLUSION

By using FT-IR and  $^1\text{H}$  NMR, numerous novel synthetic compounds made from Ciprofloxacin have been described. Some of these compounds have also been tested for their antibacterial and antifungal properties. The outcomes indicated that they were biologically active. **B8**'s biological activity outperformed that of all other synthesized compounds.

## REFERENCES

1. Ahmed, S. M., Salih, K. M., Ahmad, H. O., Jawhar, Z. H. & Hamad, D. H. (2019). Synthesis, spectroscopic characterization and antibacterial activity of new series of Schiff base derived from 4-aminoantipyrine and 2-amino benzimidazole. *Zanco. Journal of Medical Sciences*, 23(2), 206-216.
2. Akhtar, R., Yousaf, M., Naqvi, S. A. R., Irfan, M., Zahoor, A. F., Hussain, A. I., & Chatha, S. A. S. (2016). Synthesis of ciprofloxacin-based compounds: A review. *Synthetic Communications*, 46(23), 1849-1879.
3. Al-Mokaram, A.A, Ameen H. M, & Hiba A. G. (2022). Homo-and copolymerization of 2-benzothiazoyl acrylamide with  $\alpha$ -methyl styrene and methyl acrylate: synthesis, characterization and reactivity. *Polimery*, 67 (10), 489-496.



4. Alzhrani Z.M., Alam M.M, & Nazreen S. (2022) Recent advancements on benzimidazole: A versatile scaffold in medicinal chemistry. *Mini Reviews in Medicinal Chemistry*. 22(2):365-386.
5. Al-zubiady, S. F, Abdul I, Ismael S., & Ismael B D. (2016). Synthesis and Characterization of New Heterocyclic Compounds from 2, 5-dimercapto -1, 3, 4-Thiadiazole and Their Resins. *Baghdad Science Journal* ,13(2),275-288.
6. Awad, S. H, Sahib, S. A., Hussein, F. A &, Hasan Al-Khfaji, H.A. (2019). Synthesis, characterization and study biological activity of new para-methoxy benzene sulfonamide derivatives and some amino acid. *Materials Science and Engineering*,571(1),1-10.
7. Canseco-González, D., Rodríguez-Victoria, I., Apan-Ramírez, T., Viviano-Posadas, A. O., Serrano-García, J. S, Arenaza-Corona, A. & Morales-Morales, D. (2023). Facile, Single-Step Synthesis of a Series of D-Ring Ethisterones Substituted with 1,4-1,2,3-Triazoles: Preliminary Evaluation of Cytotoxic Activities. *medicinal chemistry journal* 18(8),1-11.
8. Hamdia, M. S., & Sundus, H. A. (2023). Preparation of a combination of nano-medicinal plants as antioxidants and microorganisms: Preparation of nano-medicinal plants as antioxidants and microorganisms. *Iraqi Journal of Market Research and Consumer Protection* 15(1), 1-16.
9. Hosseinzadeh, Z., Ramazani, A. & Razzaghi-Asl, N. (2018). Anti-cancer nitrogen-containing heterocyclic compounds. *Current Organic Chemistry*, 22 (23), 2256-2279.
10. Jamel, N. M, Al-hammed, K.A, & Ahmed B. (2019) Methods of Synthesis Phthalimide Derivatives and Biological Activity-Review. *Journal Pharmacy Sciences Research* .11(9), 3348- 3354.
11. Kassab, A.E &, Gedawy, E.M. (2018). Novel ciprofloxacin hybrids using biology oriented drug synthesis (BIODS) approach: Anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis, topoisomerase II inhibition, and antibacterial activity. *European Journal of Medicinal Chemistry*. 150: 403-18.
12. Khammas, S.J. & Hamood A.J. (2019). Synthesis, cytotoxicity, xanthine oxidase inhibition, antioxidant of new pyrazolo {3,4 d}pyrimidine derivatives. *Baghdad Science Journal*,16(4),1003–1009.
13. Khurshid, M. N., Jumaa, F. H. & JASSIM, S. S. (2022). Synthesis, characterization, and evaluation of the biological activity of tetrazole compounds derived from the nitrogenous base uracil. *Materials Today: Proceedings*, 49 (8), 3630-3639.
14. Mahdi, L., Al Mathkhury, H. J. F., Al-Kakei, S., Rasool, K. H., Zwain, L., Salman, I. M. A & Mahmood, N. N. (2017). Antibacterial activity of lactobacillus buchneri bacteriocin against vibrio parahaemolyticus. *Current Applied Science and Technology*, 17(1), 81–86.
15. Mahmood, W. A. R., Areej K. A & Muhammed A.M. (2022). Synthesis and Characterization of New Benzothiazole-derived Schiff Bases Metal Complexes. *Baghdad Science Journal* 19 (2), 378-384.
16. Mohan, B., & Naser S. (2023). Synthesis, Spectroscopic, and Biological Activity Study for New Complexes of Some Metal Ions with Schiff Bases Derived From 2-Hydroxy Naphthaldehyde with 2-amine benzhydrazide. *Ibn AL-Haitham Journal For Pure and Applied Sciences* 36(1): 208-224.
17. Mousa, E. F., Khammas, S. J., & Hamed, A. H. (2022). Synthesis and characterization of some new amide compounds derived from phthalimide derivatives and their biological activity. *Iranian Journal of Ichthyology*, 9(Special Issue 1), 340–347.



18. Narren, S. F, Hasan, I. M. M., Saleh, A. M., Saleh, S. H., Hamzah, M. O., & Hussein, I. A. (2019). Synthesis and Characterization of Some New Derivatives starting from Bis (4, 4'-diamino phenoxy) Ethane. *Journal of Pharmaceutical Sciences and Research*, 11(4), 1269-1277.
19. Nebras, M. J, Kawther, A. A., Basma j. A., (2019). Methods of Synthesis Phthalimide Derivatives and Biological Activity-Review. *Journal of Pharmaceutical Sciences and research*, 11(9), 3348-3354.
20. Patil, M. M. & Rajput, S.S (2014). Succinimides: Synthesis, reaction and biological activity. *International Journal of Pharmacy and Pharmaceutical Sciences*,6 (11), 8–14.
21. Patrick, G.L. (2003). An Introduction to Medicinal Chemistry. Oxford: *Oxford University Press*, 379–435.
22. Rabbani, M. G.& Islam, M.R. (2020) Synthesis and Characterization of Some NH-Analogues of Ciprofloxacin on Antibacterial, Antifungal, and Cytotoxic Activities. *Journal Sciences research*, 12(3), 349-362.
23. Raghad, A. I. (2023). Synthesis and characterization of new heterocyclic derivatives from 7- hydroxy -4- methyl coumarin and study antioxide ant activity for some synthetic compounds, *Iraqi Journal of Market Research and Consumer Protection* .6(3) 120-131.
24. Razzaq, M. W.A., Assim A. A.K. & Mahmoud M.A. (2022). Synthesis and characterization of new benzothiazole-derived schiff bases metal complexes. *Baghdad Science Journal* 19(2), 378–84.
25. Saran, I., Ghazi, L., Wilson, F. P., & Jason, H. (2022). Prevalence of Secondary Hypertension in Otherwise Healthy Youth with a New Diagnosis of Hypertension: A Meta-Analysis.
26. Saini, A. Kumar, G. Pavan, K., & Gyan S. (2023). A review of Benzimidazole derivatives' potential activities. *International Journal of Pharmaceutical and Clinical Research*.5(1),35-40.
27. Sulthana, S., & Pandian, P. (2019). A review on Indole and Benzothiazole derivatives its importance. *Journal of Drug Delivery and Therapeutics* ,9(1), 505-509
28. Tomma, J. (2011) Synthesis and Characterization of New Heterocyclic compound . *Mustansiriyah Journal of Science*, 22(2), 35-44.
29. Walia, R., Hedaitullah ,M., Syeda, F. N., Khalid , I. & Lamba ,H.S. (2011). Benzimidazole derivatives-an overview. *International Journal of Pharmaceutical and Clinical Research.*,1(3),565-574.
30. Yaseen, A. A., Al-Tikrity, E. T. B., Al-Mashhadan, M. H., Salih, N., & Yousif, E. (2021). An Overview: Using Different Approaches to Synthesis New Schiff Bases Materials. *Journal of University of Anbar for Pure Science*, 15(2), 53–59.
31. Zhilitskaya, L.V, Shainyan, A., B. & Nina O. Y. (2021). Modern approaches to the synthesis and transformations of practically valuable benzothiazole derivatives. *Molecules* 26(8): 2190- 2225.